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ABSTRACT
2 .
Let a,U € C (Q) where 9 is a bounded set in R® and let
1 2 n
(*) L(x,8) = 5 a(x)|§l" - u(x), xefl; EEeRrR .

We suppose that a,U > 0 for x € 2 and that

lim U(x) = 4o ,
x+30
Under some smoothness assumptions, we prove that the Lagrangian system

associated with the above Lagrangian L has infinitely many periodic

solutions of any period T.

AMS (MOS) Subject Classifications: 34C25, 70x99, S58E05

Lagrangian system, periodic solutions, minimax principle,
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;, SIGNIFICANCE AND EXPLANATION
;:".‘ :
A J The question of existence and the number of periodic solutions (normal
™y
modes) for a classical mechanical system is a problem as old as the field of
5 -
‘{ﬁﬁ analytical mechanics itself. The development of the nonlinear functional
j«’!t; analysis has renewed interest in these problems. In this paper we considersha 1
531‘-‘ . P ;
mechanical system which is constrained in a potential well. We suppose that 3
< a {
Tl !
;:,‘-,‘. the dynamics of the system is described by the Lagrangian |
Wl
I
o Lx,E) = > a0 E)? - ux), xeq, Eer”
'
where  is a bounded open set in R', and a,U € Cz(ﬂ) are positive
;:_1\3 functions with
EX
;’3’,‘ lim U(x) = 4w
2 x+30
i
Le Under some technical assumptions on a and U we prove that our dynamical
system has infinitely many periodic solutions of any period T > 0.
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NORMAL MODES OF A LAGRANGIAN SYSTEM CONSTRAINED IN A POTENTIAL WELL
V. Benci®

1. INTRODUCTION AND MAIN RESULTS.

Let a,U * R where I is an open set in R'. We make the following ass wmption
(Ly) 2 is hounded and its boundary is c2.
Ly uec@)

(Ly) lim U(x) = +=

x+3Q
Vu(x)ev(x)
(La) lim ————— = 4® yhere V{x) = -V dist(x,3Q)
3 Py U(x)

(L) aecid
(Lg) a(x) > 0 for every x € Q
(Lg) for every x € 3% such that a(x) = 0, Va(x) # 0.
We consider the Lagrangian
(1.0 LxE) = 3 atalEl? - oo,
xeg, e 'rxﬂ = R, and |*|l denotes the norm in R®,
and we look for normal modes of the dynamical system associated to this Lagrangian; i.e.

periodic sqlution. of the following systems of ordinary differential equations:

Yy e Ama)
(1.2 1 ,.,2 .is
a(Y)¥ =3 I71°Va(y) = (Valy) * Y)Y - Vu(y)

where "+ denotes -:T and "+" denoted the dot product in R®. We restrict our

attention to periodic solution of a given period T, and in order to simplify the notation
we suppose T = 1. Algo it is not restrictive to suppose that
(Ly) U(x) >0 for x€Q and min U{x) = 0.

xeQ
The main result of this paper is the following theorem

*Dipartimento di Matematica, Universita di Bari, Bari, Italy

Sponsored by the United States Army under Contract No. DAAG29-80-C-~0041.
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M Theorem 1.1. If (L)-(L;) hold then the equation (1.2) has infinitely many periodic

distinct solutions of period 1. More exactly there exists a positive integer Ny and two

'j positive constants E' anda E” such that for every N > Ng there exists YN e Cz(l,ﬂ)

such that
. (1) v, Ais solution of (1.2) .
1
. (11) YN has period N
B (111) E"N2 < E(v,) < E*n?

where E(Y) = 3 a(v(t))[4(t)1% + U(Y(t)) 18 the "emergy” of v.

(1v) aN’ < Jtyy) < ow?

where J(y,) = f a(YN)|7|2 - Uly,)dt and a and B are constant which depend only on #

{but not on U and N). Moreover if Ulxy) = 0 (i.e. xy is a minimum point) and

Utx) = oflx - xnlz) for x + xy ,
then we can chooge N, = 1.
2 Remarks I. Notice that (ii) does not say that % is the minimal period of Yyy,. It might
happen that A" has a smaller period. Thus it wmay happen that YTy = Tn for some M % N.
However (1iii) implies that if M >> N then \[” # Tn*

II. As easy one-dimensional examples show it is possible that equation 1.2 has no

periodic solution with minimal period 1.

III. Assumption (L) which may appear as the less natural one, describes the -
behaviour of U(x) as x + 3. It says that U(x) cannot "oscillate™ too badly near the
boundary.

IV. We have decided to consider Lagrangian of the form (1.1) (i.e. with a(x) not
identically 1 and in particular with a(x) which may degenerate on 93fl) because in this
way theorem 1.1 can be applied to the study of closed geodesic for the Jacobi metric (which
degenerates for x + 39)1 cf. [By].

) V. By the proof of the theorem it will be clear that the same result hold for a
o Lagrangian of the form
Lix,E) = [ ja,5 (008 = Ulx)

2
: with zuaij(x)EiEj > alx) &} and satisfies (L,-Lg). More in general, the same method
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apply also to the case in which @ is a Riemann manifold with a cz-boundary. We have

decided to consider a simpler case in order to not make the notation and the uninteresting

kS . technicalities too heavy.

igﬁ Vi. The results of theorem 1.1 holds also if a and U are of class c' {ct.,
Ty

v2§ . remark II after theorem 2.3). However, in order to not get involved in technicalities

2

which will obscure the main ideas we have preferred to treat the C“-case.

The study of normal modes of nonlinear Hamiltonian or Lagrangian systems is an old

gg; problem which in the last years has attracted new interest. We refer to [Ry] for recent
iig references on this subject. However, as far as I know there are no results of the nature
of theorem 1.1, i.e. periodic solutions in a potential well. The more similar situations
to the one considered in this paper are the following ones

(a) @ is a compact manifold without boundary

(b) 8 =R but U grows more than quadratically for |x| + ** or, more precisely

0 < U(x) € 8U(x) « x for x large

&

R
L a A

Lo
) »

(notice that the above condition is the analogous of (L3) when 8 =r".

In both cases (a) and (b) we have a result similar to heorem 1.1 (cf. (B,] for (a);
¢ {Rg), [BF] or [G] for (b); also the case (b) has been considered in [Ry], [BR] and (BCF) in
the context of Hamiltonian systems).
. What we want to remark here is the similarity of these three situations. In case (a),
the existence of infinitely many periodic orbits can be proved by virtue of the compactness
of Q (provided that § satisfy some suitable geometric assumption as having the

fundamental group finite). In (b) and in theorem 1.1, the lack compactness is replaced by

2
By the growth of U.
_;E A last remark about the technique used to prove theorem 1.1. We have used variational
;i arguments reducing our problem to the proof of existence of critical points of a functional
,ﬂﬁ defined on an open set in a Hilbert space. In proving the existence of critical points for
;S functional in infinite dimensional manifold the well known condition (c) of Palais and
Smale (P.S.) has bheen used. However in our situation (since we deal with a non-closed
'?i . manifold) (P.S.) is not sufficient. For this reason we have used a variant of (P.S.),
B
B - -3-
o
8,
%
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which fit our case, obtaining an abstract theorem (theorem 2.3) which might have some
interest in itself as a further step in understanding the critical point theory in infinite

dimensional manifolds.
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2. AN _ABSTRACT THEOREM.
Let X be a Hilbert space with norm (¢l and scalar product <¢,*> and let A be
an open set in X (or wmore in general a Riemannian manifold embedded in X). Cn(A,I)
will denote the set of n-times Frechét differentiable functions from X to R.
If t € Cn(A.l), £' will denote its Frech@t derivative which can be identified, by
virtue of <°*,*>, with a function from A to X.

Definition 2.1. A function p : A *+ X is called a weight function for A if it satisfies

the following assumptions:
1 secm
(i1) p(x) > 0 for every x € A
(111) lim p(x) = 4=
x*3A 1

Definition 2.2. We say that a functional J € C (A,R) satisfies the weighted Palais-Smale
condition (abbreviated W.P.S.) if there exists a weight function p such that given any
sequence x, € A the following happens:

(wps 1) if pix ) and J(x,) are bounded and J'(x,) # 0 then x, has a
subsequence converging to x € A

(wp8 2) if J(x,) 1s convergent and p(xn) + 4w, then there exists Vv > 0 such
that

IJ'(xn)l > vlp'(xn;l for n large enough.

Remarks. (I) We say that a functional satisfy the Palais-Smale assumption on a Hilbert

(or Banach) manifold A if every sequence x, such that J(x;) is bounded and

n
J'(xn) + 0 has a converging subsequence. Most results in critical point theory have been
obtained using the (P.S.) assumption. However, as easy examples show (P.S.) is not
sufficient to obtain existence results when A is an open set in a Hilbert space, or to be
more precise, when A 1is not complete with respect to the Riemannian structure which we
want to use.

(II) If A 1is a closed Hilbert (or Banach) manifold then (P.8.) implies (W.P.S.) (it

is enough to take o 2 1). Moreover if A = X, choosing p(x) = log(1 + lez), then
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(W.P.S.) reduces to a generalization of (P.S.) introduced by G. Cerami [C] (cf. also
(8.B.F.] and (B.C.F.]).
(III) 1If a functional J satisfy (P.S.) then the set
K, = {y e AlI(¥) = ¢, J*(y) = 0}
is compact. If J satisfies (W.P.S.) we can only conclude that
K, N {y e Alply) < M}
is compact for every M > 0. Thus (W.P.S.) might be an useful tool for analyzing
situations in which we do not expect to find a compact set of critical points at a given
value c. (However if p'(x) # 0 when p(x) is large, then K, is compact).

Definition 2.2'. Let X be an Hilbert (or Banach) space. Let S be a closed set in

X, and let Q be an Hilbert manifold with boundary 9Q. We say that S and 98Q 1link if
(a) S5 N3Q=¢
{(b) if h : 0 +* A is a continuous map such that h(u) = u for every u € 3Q,

then h{(Q) N s = ¢.

Theorem 2.3. Let A be a Riemannian manifold embedded in a Hilbert space X and let

Je Cz(A.R)- We_ suppose that

(J4) J sgatisfy (W.P.S.)

{J5) there exists a closed subset S C A and an Hilbert manifold QC R with

boundary 30, and two constants 0 < a < 8 such that

(a) J(y) €8 for Y€ Q and min lim J(y) < 0
Y30
(b) J(y) >a for every Y€ S

(c) S8 and 93Q 1link.

We set H = {h : Q0+ Alh(y) =y if J(y) € 0} and

c = inf sup J ° h(yY)
hel yeQ

Then c € (a,8] and it is either a critical value of J or an accumulation point of

critical values of J.

Remarks. (1) Theorem 2.3 is a variant of similar results (see [B.B.F.] theorem 2.3,

[B.R.] or !R3]). The novelty lies in the fact that A might be an open set, therefore

-6~

:'.-:'-"'}::-;i TN ‘\ ANEREN N SN \}\vx\]
AR W N e MO




N (P.S.) is not sufficient to guarantee that ¢ is a critical value of J. Therefore we
have to require (W.P.S.). A consequence of this fact is that we do not know that c¢ is a
critical value of J; it might be an accumulation point of critical values of J (unless
(P.S.) is also satisfied)

(II) The assumption J € Cz(l\,ll) is not necessary. It would be enough to assume

Je C‘(A.R). With the latter assumption the proof of lemma 2.4 would be more technical.

t!": However if the reader is interested to prove theorem 2.3 under the less restrictive
;;..: assumption, he has to “interpolate" between the proof of lemma 2.4 and theorem 1.3 in
o
?°.'3~,A [B.B.F.]. Since in our application, it is sufficient to assume J € c? (A,R), we did not
S bother to be as general as possible.
*q:":“ To prove theorem 2.3, we need the following lemma

Lemma 2.4. Let J € C2(A,R) satisfy (W.P.S.). Suppose that c¢ is not a critical value

of J nor an accumulation point of critical values of J. Then there exist constants

€>€>0 and a function N : [0,1) x A *+ A gach _that

e,

Y
L2
a (a) n(0,x) = x for every x € A
“*2 {(b) n(1,x) = x for every x such that J(x) ¢ [c - €,c + €] and every t e R
-
() n(V,A ) C A
e ] -
Ll where A, = {x @ A|J(x) < b}. Moreover € can be chosen arbitrarily small.
2% _—
N ‘ N Proof. We set
1"’.'
!n
B} S¢ = (x € Alc - € € I(x) ¢ c +¢)
= {x @ Alp(x) € M}
[ \"2 We claim that there exists €, M and b such that
Y N
A & (2.1) 13'(x)1 > blp*(x)1 for every x € S; - Ay .
:.. In order to prove (2.1) we argue indirectly. Suppose that (2.1) does not hold. Then there
.;_‘,;n' exists a sequence x, such that
Tyaly
;$,a (a) J(x ) +c
s
‘,?-‘;—* (2.2) (b) D(xn) > 4o

(c) lJ'(xn)l < bnlp'(xn)l with b, + 0 .

Then we have

LN HLRLRCNL T4 ¥ "n’
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0 ¢V € min lim T;TT;;TT

(by (2.2)(a)(b) and (W.P.S.}(ii))

Smin limb = 0 by (2.2)(c)

This is a contradiction which proves (2.1). It is not restrictive to suppose that € is

so small that [c - €,c + €] does not contain critical values of J; this is possible
because we have supposed that ¢ is not an accumulation point of critical values.
We claim that for every M, there exists bM > 0 such that
(2.3) 13'(x)t > b, for every x €’ Ay -
In fact if (2.3) does not hold there exists a sequence such that
(a) J(xn) € [c~-¢c,c+cl

(2.4) (b) p(xn) <M

(ec) IJ'(xn)l < bn for some aequence l:on + 0 .

Then, by (WP8 1), it follows that x, has a subsequence conveying to some limit X. So we

have

JUF) =0 and J(X) = ¢ %% 1im J(x ) .
n*ie n

Thus c @ [c - €,c + €] is a critical value of J contradicting our choice of €. Let

¢ : A+ R Dbe a Lipschitz continuous function such that

1 if xeSE

(2.4) $x) = /2
0 if x ¢ 53
and we set
$(x) L) for x @ s;
1" (x)t
(2.5) Vix) =
] for x ¢ Sz

By (2.1) and the definition of ¢, V 1is well defined and locally Lipschitz continuous.

now consider the following initial value problem

We
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A = -v(n)
(2.6)

n(o0) = x
By basic existence theorems for such equations, for each x € A there exists a unique
golution n(t,x) of (2.6) defined for t € (t-(x),t+(x)), a maximal interval depending
on x. We claim that tt(x) = +m, Let us prove that

ttx) = = .
We argue indirectly and suppose that tY(x) < 4,
First of all we can suppose that

(2.6") n(t,x) € sz for t e (0,t%(x))

otherwise the conclusion follows directly from (2.5). If (2.6') does not hold we claim

that
(2.6") p(n(t)) < M for every t e [0,t*(x))
' (x) -
vhere M = M  + bx and My = max{p(0),M}. If the above inequality does not hold then

there exista t,, t, with 0 € £, < t, < t+(x) such that
M, < pinit)) € M for t € [ty,t,]
and

(2.7) PIN(EL)) = Mys p(n(ty)) = Mg

then, for t € [t,,t,]
IS p(nit, XN = <" (nlt, X)), V(nit, x| [by (2.6)]

1p’ (n(t,x)1
< ¢(n(t)) 1T it T [by (2.5)]

[by (2.6'), (2.4') and (2.1)]

vl

Then we have
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M- H1 = p(n(tz.x)) - P(ﬂ(t,;x)) [by (2.7)]

t

2 d
<] I etnte,xlae
4
< (t2 - t1) % [by the above inequality]
' ()
C=p—=M-w, [by the definition of M]

This is a contradiction. Therefore (2.6") is proved.
Then by (2.3), there exists by > 0 such that
(2.7%) 13t (n(e,x))1 > b for t e [0,t7(x))

Now let t  be a sequence such that L t+(x). So we have

t
n+k
tnce %) = ale x)l = l{ v(n(t,x))dtl (by (2.6)]
);% n
v“ tn+k 4
RY < _ 2.4) and (2.5
A { 13 (n(t,xn1 [Py (2.4) and (2.5)]
n
e
S cb e -t 70
A v Enax = tn fby (2.7')]
G

This implies that n(tn,x) is a Cauchy sequence converging some x, € A as t, * tt o).
Moreover P(X) = lim p(n(x,t )) € M, therefore, by Definition (2.1)(iii), x € A. But

n+*toe
the solution of (2.6) with initial condition X furnishes a continuation of n(t,x)

contradicting the maximality of t*(x). Analogously we can prove that t (x) = -»,

S Therefore n(t,x) is defined for every t € R. Since gt J(n(t,x)) = -1 if

;iéf nit,x) e Se/2 by an easy standard argument the conclusion follows. O
;j&i Proof of Theorem 2.3. By virtue of lemma 2.4, the proof of theorem 2.3 is almost a

;?i repetition of analogous proofs (cf. e.g. [B.R.], [R3] or [B.F.]). We sketch it for

completeness. By the first part of (J,)(a) and since the identity belong H, ¢ < B. By

LARL the second part of (J,)(a) and (J,)(c), h{(0) N s # ¢5 then by (Jy)(b), c > a. Then c

‘,‘Z’ ! -10-
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is well defined and is in (a,B8]. It remains to prove that c¢ is a critical value of J

or it is an accumulation point of critical values of J. Suppose that neither possibility

holds. Then the assumptions of lemma 2.4 are satisfied. Choose ¢ € (0,al,
as in lemma 2.4. By the definition of ¢, there exists h € H guch that
sup J °* hix) € c + ¢
x€Q
By lemma (2.4)(c) and the above inequality we have
(2.8) supJ *ne*hix)<c-c¢
x€Q
By lemma (2.4)(b) and the choice of €, ne* heH then by the definition of
sup J *°n ° h(x) » ¢
xeQ

The above inequality contradicts (2.8). Thus the theorem is proved.

-11-

4.-' W W

o *'

2ty A

€

and n




B - - LI T T LA Ro - et i _Pep g phe AT Sl e W e WaN e VW NP aVe oo s
L%'

&

\;'j, 3. PROOF OF THEOREM 1.1.

zz

) Ve set

- (3.1) A'a = (y e v's', B vie) eq) (s = [0,11/00,1))

f% where H'(S‘,IP) denotes the Sobolev space obtained by the closure of ¢”-functions

F; (periodic of period 1) with respect to the norm
e ! 2 2 1/2
s = [ O51° + 1v1%)ae]

0

(R

.;:!

5{ since H'(s',®) c c%s',®"), then the set A'2 is an open set in 1'(R,%). The

] periodic solution of (1.2) are, at least formally, the critical value of the functional
‘f" (3.2) Jy) = [ {% a(m 112 - vin)fa

3

”

%% However the functional (3.2) does not satisfy W.P.S. (nor the condition (J;) of theorem

2.3) on the set (3.1). Therefore it is necessary to modify the functional (3.2) in a

o suitable way. Then we shall apply theorem 2.3 to the modified functional and finally we

shall prove that the solutions of the modified functional are the solutions of our problem.

:?5 In order to carry out this program we start defining a function h € Cz(ﬁ) with the
following properties
o (1) h(x) = &(x,30) if a(x,3%) < 4,
3
= (11) hix) > a, whenever A4(x,3R) > d,
3 (3.3)
2? (141) Vh(x) < 1 for every x € Q
- (iv) h(x) <€ 1 for every x €@ {i
L
o where d; is a constant sufficiently small. Such a function h exists since Q is
b assumed to have a cz-boundary. Also we set
%
2 2
a [8x])
(3.4) hO = 'ug h(x) 2x
xenn |8x]|
Sxen

where dzh denotes the second differential of h. Moreover we set

(3.5) v(x) = =Vh(x) so that Vv(x) € C‘(ﬂ,lp) and |v(x)| € 1.

Now let ¢,x €@ c"(®) be two functions such that

e ﬂx
o 5

'f*) -12-

~

5
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d(t) = ¢ for t > 1
ey =1 for v <3
0 < 9'(t)t € §(t) for tE€R
x{t) = 0 for t < 1
x(t) = 1 for t > 2
x'(t) > 0 for t eR

and set

a, (x) = { s(2a(x))

H
(x) -— {x(An(x))u(x) + 11 - x(An(x))) 2}
H

A hix)

vhere M, = sup{u(x)ix e h-‘([l, -i-])}. Clearly a, and UA,N

(3.6) ax(x) > % for every x & @

Our modified functional will be
ol B amiii® -, et
o 2nl AnY
It is easy to check that "x,u”) e cz(A10.l) and that
3! _(v)(8y] -f‘ {a (Y)?'W*l(h (v) » &8 )|'|2-VU (y)
ANTVIEVEE ST z MY SNy Aty

for Y€ A'R ana Sy ents',®®

are czotunction- and

¢ §ylat

S AL

Now we want to apply theorem 2.3 to the functional Jy.qe Im order to do this some lemmas
’

are necessary.

Lesma 3.1, (a) there exists a constant b = b(A,N) such that

b(—J—z) €U, L) <
hix) h(x)

+1)

(b) there are positive constants 8 and Ky J{which may depend on

-{3=

at®
\..,-'

oy 0t W%

X '$ \?\gc& el ( e J's _. '.":','_:-,:.:

A and N)

such

PR et b |
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vu (x) » vix) >8

AN - K

h(x)3 !

(c) for every M > 0 there are constants a(M) and (M) guch that
ux'"(x) < % VUX'N(R)'V(x) + a(M) for every x € 9 and every A > k(M)
(d) there exists a function A + 6(A) such that

(1) 1lim 6(A) = 4=
ez}

(11) for every u e I such that UA,N(x) < ii 0()), we have

U, 4% = i; Ulx) and a,(x) = alx)

(e) there exists a constants X such that
Vax(x)ov(x) < xax(x) for every x € Q and evexy A > 0

Proof. (a) and (b) follows by the fact that for x sufficiently close to

M|, U (remember that for x sgufficiently close to

AN 2 2
W, [Mix)] = 1).

Let us prove (c). Since v(x) = -Vh(x) we have:

(3.6a) X {x)ev({x) = -5 {x(lh(x))VU(x)ov(x) + [1 - x(Ah(x))) l!i!ll— ",
N h (x)

)
+ Ax' (An(x)) |
h(x)

5 = vt ] 1w 1%}

If x'(Ah(x)) # 0, then x € h-1([%, %])- Thus for such values of x, by (3.3)(iv) and

the definition of "X we have

Y

- U(x) >M, = U(x) >0
h(x)2 A

Thus, since x’'(t) » 0 for every t € R,

M
(3.6b) X" (e | A 7 U(x)] > 0 for every x e
h(x)

By (L3) and easy computations, for every M > 0 there exists ag such that

-14-
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}‘4. (3.6¢c) VU(x)ev(x) > MU(x) - a, for every x €8
) Moreover, for x sufficiently close to 38

”: . I\o(x)l2 > —M

3 nex)®  hex)?

. Then there exists X(M) such that, for A > X(M)

, [1 ~ Xx(Ah(x))) lBiill— > (1 = x(Ah(x))) =2
a ntx)> h(x)
1

‘V

4, So by (3.6a), (3.6b), (3.6c) and the above inequality we get

MM
1 A
Y, g (x)evix) > = {xOn(x)MO(x) = ag + [1 = x(An(x))] h(x)’} >

> mx'w(x) - .o

From the above inequality (c) follows. Now let us prove (d). We set

nx = {x @ R|Ah(x) > 2 and la(x) > 1}

RE and
'x“ 1{ H
5 8(2) = inf{x{(Ah(x))U(x) + [1 = x(Ah(x))) 71 xea- “xl
W h(x)
. by (3.3), (Lg) and (Ly), O(A) » += for A + +=. Moreover, it U, .(x) < 41, by the

’
.. N
1 definition of 0(A), x € @y. Then Ah(x) > 2 and Aa(x) » 1. Therefore x(Ah(x)) = 1

and % ¢#(la(x)) = a(x). This proves (d). 1In order to prove (e), we set

I'={x e 3Qla(x) = 0} .

Since a(x) >0 for x e Q it follows that Va(x)ev(x) < 0 for every x € T'. By virtue

“ of (Lg) and the compactness of T, there exists a constant 8 > 0 such that
i (3.64) Va(x)*v(x) € =8 for every x €T .
e Let

v

B = (x @ Q|Va(x)ev(x) < 0}

=]

By (3.64), B 1is an open neichborhood of I relative to fi. Then, since 1 - B is T

o

od

f;, compact, by (Lg), there exists a constant cy such that

- a(x) » cq for every xefl-B.
A

iy

A

o -15-
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Using again the compactness of §i - B, there exists a constant c; such that
Valx)ev(x) € €, for every x € 8-1.

8o, choosing K = c2/c1, it follows that

Wt
2
K;
5
-
#

(3.6e) Va(x)*v(x) € Ka{x) for every x € 0
Then we have
Va, (x)ev(x) = ¢'(Ax)Va(x)*v(x)
> X¢'(Ax)a(x) by (3.6e)

> K{ ¢(Ax) = Ka,(x) by the definition of ¢ and a - o

In order to apply theorem 2.3 to the functional :.lx - it is necessary to choose an
’

appropriate weight function; we make the following choice

1
(3.7) ply) = [I ——; at] /2
0 h(Y)
Jemma 3.2. The function p defined 3.7) satisfies the assumptions of definition 2.1.

Proof. (i) and (ii) are trivial. Let us prove (iii). Let Y, © A'2 bea sequence

approaching OA'O and let t, be such that dist(Yk(tk),an) < dilt(Yk(t),m) for every
t € (0,7). We want to prove that p(Yk) * 4o, gince p is invariant for “time
translations”, we can suppose that t, = 0 for every k.

By the Schwartz inequality we have

t 172¢ % 271/2 172
1Y, (t) = v, (0)] ‘£ 19, (8] < ¢ [{ 19, () 1%) 7% < oy e

Then, by (3.3)(iii),

D (3.8) Ih(Y, (£)) = hiY, (0))] < max ITn(x)| + Iy (t) = v, (O)] < 1y 4e?/2
I xed
Lt If we set
RN
Ny n(y,) = By, (0))
,',
RS, by (3.8) we get

1/2
h(vk(t)) < "'”k) + Iyle .

We can assume that lykl »>a >0 for k large and some positive constant a. Then we
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jh?ﬂ e, ;4"’ }\x, ,' f.t",..(.

have
-
1 » 1 51 K
nyen? )+ eV3H2 0 202 s e
So -
2
1 1 iy
p(v)-[ 1 2dt.>l[ 79"—2- 12109(1# "2)
0 h(y(t)) 0 m(y) + Iyl't l'rkl -(1k)

From the above inequality and since lykl >a>0 and -(7“) + 0 for k + +» the

conclusion follows. At a

Lesma 3.3. PFor every N> ' and X > 0, the functional AN satisfy W.P.S.
Proof. To simplify the notation, in this proof we shall write J,U and a instead of
JL“, ux" and a. Let us start to prove WPS 1. In the following 84,83, will
denote suitable positive constants. Since p(y n) is bounded, then by lemma 3.2,

st (v ,31'8) > a

H
(3.9) dilt(vn(t),aﬂ) >a,>0 for every t € [0,1] .

1
1 > 0. So dist -(Yn.lA ) > a, > 0 and this implies that
L

Since J(Yn) is bounded it follows that
‘ .2

] 3 aty )i dt  1is boundea.

Then Iyl 1 is bounded, therefore (may be taking a subsequence) we have that
R

(3.10) Y, * Y weakly in u'(s',®") and uniformly.
We have to prove that 'n * ? strongly in n'(s‘.l"). 8ince we suppose that J'(Yn) + 0,
we have that

1 s 12
(3.11) J {aty )t 8% + 3 (Valy D8I 1Y 1 - Yoy )-dv}ae = ¢ 1en

1

for every Sy e n (we have identified Il‘ with its dual), where l:n is a sequence

conveying to 0. By (3.9) and (3.10) it follows that

(3.12) / vu(y, )8y < IVU(vn)IL. [ 8y < azl&yln. 1
Also, using (3.10), we have

(3.13) C 2 vacresvit 12 < 2 wvacy 0 iem iy 1% <atemt
L L B L

«{7=

RN
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By (3.11), (3.12) and (3.13) it follows that

Jaty oy 8% = € 1871 + (a, + .3)|ay|L_

for every &y e n‘(sz.n“). In particular, taking &y = Y, - Y we get

(3.14) / aly W (¥, - Y = ey, - 1 + o(1)

since 'Vn -yt w0 for n+ +», 5o by (3.6) and (3.14) we have
L )

1 -2 1 . s 2 . 202
AW, W S ¥-71%+om < aty 1Y, = ¥1° + o(1)

= aty ¥ (3 -V - [ Aty N, - )+ o)

95 <ely -¥1+ Ia(vn)IL_ [YG, - + o) =ty =71 +0(1)

from which the conclusion follows. Now we shall prove W.P.S.(ii). 1In the following
bysbyse.. will denote guitable positive constants. Now let Ya be a sequence such that
(a) J(Yn) is convergent

(3.15)
(b) ply,) + +=

Then we have

v ax | 112 < a1 (by (3.6))
; &
. < u(y,) + b, (by (3.15)(b))
(3.16) <b, [—1—+b,  (by lemma 3.1(a))
I hiy )
P n
iy )
g byoty )* + b, (by (3.7))
"y

We now set
Syn(t) - V(Yn(t)) - -Vh(yn(t))

1era

2
%
b
]
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Thus 68y, e s, ®®) ana

(3.17) ey 1% = [ 1aPnev )18 117 + 19ney )1 %ae <

2
$og [ 11,1°+ b (by (3.3)(111) and (3.4))

2
< bsp(Yn) + bG (by (3.16))

Then by the above formula we have
(3.18) ldynl < b.,p(yn) + b8
Ve have

IJ'(Yn)l(b7p(1n) + ba) > lJ'(Yn)IIGYnI (by (3.18))
> -J'(Yn)(GYnl
! 1 2
= { vutyn)-cvn - a(vnlfnG?n = 3 Vaty )edv ¥ |

(by the definition of J')
1
0

(by the definition of GYn)
1

0 L

2 .21 .
- VO(Y, )ev(y ) = aly )a"h(§17 = 3 Valy dewiy )T,

2
|

. 12
> [ vuty yevty) = taty _Idzh(vn)['lln.! ¥ 17ae

- -2‘- aly M _etvly, )l ol 1! 23
L A

>y | —1—5 b, [ ¥ Y (by lemma 3.1)(b), (3.5) and (3.4))
n 10
h(y_)
n
>b!—1—'-b 9(7)2-1, (by (3.16))
9 3 P1Plla 12 PY B3
h(vn)

Next we shall compute lo'(yn)l. We have

o'y (8y] = -” d )-"/2 f h( ).6 dt for Y €A 0 and
h(Y) h(Y)
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then

- ' (y)6y] . 1 1 Vh(y)$
torcrt = sup EpErL - oy s oy [ ST ae

18yi#0 18v1#0 h(y)
Wyt
1 L |Vhiy)] |Vh(Ll
< sup I at < f at .
PO ygyaso 1SV T 4(p)d "‘V’ niy)3
By the HSlder inequality we have
L 1 42/3
< U —
0 hiy) h(y)
then
o [f 5 ae]¥2 - o3

nin3 niy)?

By the above inequality and (3.19) we get

) 1 1 1 3 _ 2 _
1310y IH(boaly, ) + bg) > 5 by i _hm3 + 3 bgo(y,) b,pty,) by,
Now, since D(Yn) + 4», for n large enough we have
Wy > == | ——
"7 plr,) h(v )
Since |V} € 1 (by (3.3)(iii)), the above inequality and (3.20) imply that
lJi(vn)l > b,alp'(Yn)l
and this proves W.P.8.{ii). O

To simplify the notation we shall suppose that
(3.21) oeq
Now let
vs={ye H‘(S‘,RP)IY is a constant}
and let vt its orthogonal complement in H'(S',R). we set
(3.22) Q=(vx{resin2ntlr>0}1n A'a, ee R, lel =1.
let R be a constant small enough in order that the ball of center 0 and radius R is

contained in fl. Then there exists an integer number Ng such that

=20~
\ A n o, A AL A PR IPRYT 4 TS EMOA L "- OSBRI I
:)“Qh *\‘e '\‘. ! . 'I - . -.:.'5‘ %f .a‘_-'.-_-.<‘q_
] p -
'Y |!‘ ALY o 'k's.i‘-f.




2
%U(x) < -!';— for every x € Bp(0) and every N 2 N,

By the above inequality we get that

. (3.23) UA,N(X) < :— for every x € B.(0) and every N > N, and A > xo

0
U(x)

where Xo is big enough in order that U, N(x) = for every A > XO and every
14

X € Bo(0). Observe that

(2.23%) if U(x) = o(|x|2) then we can choose Ng = 1
12"1 provided that Kk is small enough
.}3 Now we set
‘mﬁq 1
S (3.24) s ={yev iyl =R}

We have the following lemma

Lemma 3.4. For every 1\ > Xo and N> “0' I\ N satisfy the assumptions (J,) of theorem
L}

2.3 where S8 and Q are defined by (3.22) and (3.24) respectively and a and B are

constants which depend only on fl. (but not on U, A and N).
Proof. (a) If Y €Q then Y(t) =y, +y,e sin(2xt) with y; € K and y, eR.

Since QC A‘n then

¥y * yz¢ sin(2vt) ¢ § for every t € [0,1]

. Therefore
R (3.25) lyql ¢ &1 |yl < 24 where d = max dist(x,30)
A xea
iy Thus, by (3.21)
JA N(1) < f % |y2| [2n cos(2mt)) dt < 8n dz dgt B for every Y OQ .

’
; " Also B depend only on 4 i.e. on the geometry of f. Now let us prove that
gy (3.26) min lim J(Y) € 0
4% Y+3Q
Y‘?q We have

cwna'myuena'e

] If Yer'\A1ﬂ we have
<P .
Cxh 3, (Y) = [ U, _(y)dt € 0 (by (3.24) and the definition of V)
¥ o AN AN

{4

If Y e QN AQ we have

=

T 2
e ﬁxb‘
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1 2 2
Iy ) = [ {5 1y, 1% (2% cos 2me1” ~ UX'N(Y)}dt <

AN

% iy

<o’ b [ —1otb  (by lemma (3.1)(b))
h(y)

s v

(S

<~ - bp(r)? (with K = 8waZ + b)

-

A7

Then (3.26) follows by the fact that 11m1 p(y) = 4@ (cf, lemma 3.2). Now let us prove
Y+IA Q

that assumption (J,)(b) of theorem 2.3 holds. If y eSS then Iyl =R and [y(e)] € R

"
%

¢ "
P’
L e for every t € [0,1]. Then, for A > Xo and N > Ny, by (3.23) we have
B
st Rz
(3.27) UX,N(Y(”) < 'y for every t € [0,1] and every Yy € S .
TRy
A
¥ ¥
;i Moreover for Y € S, by the Poincaré inequality [ 112 < S #12;  then
By
e
' 1 2 1 2 1
s s e P =g ® =18 for ves.
‘( !
; Thus by the above inequality and (3.27) we get
§ .
o
5;* 3, 0 = (3192 wiven]ae > R2 -1 R2 15298 4 o every yYes
P2 AN 3 8 8
S 4
XA This proves assumption (b) of theorem 2.3 with a depending only on R, i.e. on the
o
R
29 M geometry of . The fact that 53 and 3Q link, is proved in proposition 2.2 of
‘_‘K," [B.B.F.]. Actually there Q is defined in a slightly different way, but this fact does
W not affect the proof. ]
j,’% Finally we are able to find solutions of the modified problem.
b
f.; lemma 3.5. For every N “0 and ) > A* D Ao (where A* is a suitable constant) there
Y
1
Yy exists Y, e Cz(Sz.Q) such that
’»
< (a) a€Jy (v, () ¢B where a and 8 depend only on Q.
’ ’
o) =31 29a, (v, ) - (Va,(y, J+f, ) -, (v, )
::; ) a, vy I "2 M ! " a0 0 e e AN TN |
oA s |
' dgf ‘
-~ (c) @< 5a,ly, “(t.))Hx N(t)l x,n”x,u“‘” E,n S0 forevery te (0,1)
.
%4 where ¢ is independent of A and N. !
X' ‘
! |
Rl ¢ '
'«f -22- ‘
¥
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Proof. By lemma 3.3 and lemma 3.4 the functional J, . satisfies the assumptions of
’

theorem 2.3. Then there exists Y =Y, . e A‘ﬂ such that
L4

(3.28) JU(Y)(SY) = 0 for every Sy e n'(s',rRY
and

3.29 = i < <
(3.29) J(Y) c’“N with a CX,N [}

The above equation proves (a). Moreover by (3.28) it follows that ) N(t) satisfies the
*

equation (b) in a weak senge. By standard regularity arguments it follows that vy is of

class c2. Now let us prove (c). 1t is easy to check that

(3.30) —a (Y(t))l?(t)l (y(t))

2 A X,N
is an integral of the equation (b) (in fact it is just the energy). Therefore it is
independent of t; we shall call EX - its value. Integrating (3.30) between 0 and
’
1 we get
1 2

(3.31) E) N [ {7 a,tnig1° + UX'N(Y)}dt

writing (3.29) explicitely we have
1 2 _ i

(3.32) a< | {E a, (It} UA'N(Y)}dt <B
By (3.31) and (3.32) we get

(3.33) aCE <2 J U,,n(Y)dt + B
The above formula gives the first of the inequalities (b). In order to get the second one
more work is necessary (and it‘will be necessary, for the first time, to use the assumption
(L3) which has been used to prove lemma 3.1(c)). Writing (3.28) explicitely with

8§y = v(y) = -Vh(y) we get

2 2 1 12
(3.34) f {aA(Y)d h(91 + 3 Valy)evin1§1° - vu(y)ev(y)}at = 0

Now take M = 4hy + 2K. Then, for A > X(M), we have
1 L]
/ Uy ylY(E)Iat < & / VU, ((Y)ev(Y)dt + a(M) (by lemma 3.1(c))
= L[ {a,na?nin? + § va, oevn 11 }ae + a0 vy (3.30)

h
< iﬂ i ax(Y)Iilzdt + 55 ax(Y)|?lzdt + a(M) (by (3.4) and lemma 3.1(e))
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(2hy + X)[F [ a (2191 %at] + am)

[f Uy N(Y)dt + B] + a(M) (by our choice of M and (3.23))
’

[

Then we get
1 9
= < -
3 / Uy (Y8 €38+ am)
By the above inequality and (3.33) the last inequality (c) holds with o = 38 + 2a(M) and
A* = max(A(K),)g). 0
Finally we can prove theorem 1.1

Proof of Theorem 1.1. For any N » Ny choose A(N) > A* large enough such that

B(A(N))
2 0

where O()) is defined in lemma 3.1(d). Then setting 7N(t) = YA(N)'“(t), by lemma 3.5
(c) we have

Oy oy, T (890 € 9 € —9‘—'% for every t € [0,1)

Thus by lemma (3.1)(d), we have that

(T (e) = .(?"(e)

(3.36) RIUA -
X(N) “ (t)) ;5 U(y(t)) for every t e (0,1]
By the above identity we have that
1 ~
(3.37) 3,6 -/3 .(v,,)lv,l -3y

Moreover, using again (3.36), by lemma 3.5 (c), 7“ satisfy the following equation

~ o~ 12~ Val3 1ok b 1 )
a(YN)YN -3 IYNI alyy) = ( a(vn)-v“)vu - ;3 u(yN
Therefore, setting Yn(t) = 7“(Nt). it follows that YN(t) satisfy the equation
-l 2 - -
A(YN)YN 3 HNI v‘”u) (VYN-YNWN VU(YN)
Then (1) and (ii) of Theorem 1.1 are proved. By (3.37) and lemma 3.5 (a) we have that

o < [ 3 altrg)lfyl? - viyy) < o
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The above inequalities prove (iv) of theorem 1.1. Moreover, using again lemma 3.5 (c) and

5 o

(3.36) we get

a< % l(;“)l;lz + UF (;n) € 6 for every t € (0,1)

»
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«
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Therefore

2

1 2 2
aN” < 3 Q(Y")Hul + U(Yu) < oN

Thus (1ii) of theorem 1.1 is obtained with E = a and E' = 0. The last remark of

& >
PN
;Jxébxﬁﬁ

theorem 1.1 follows by (3.13°'). D
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